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Background: To map information processing in the brain,
researchers use encoding models to evaluate if stimulus properties
predict brain data.

CMU Google

Inference Framework

Zone residuals: capture any stimulus
effect that is not shared between two
zones (areas 2 & 3)

Results on 2 fMRI Datasets

Dataset 1: Courtois NeuroMod [7]

. i L Dataset 2: Human Connectome Project [8]
Zone generalization: how similarly two

zones are affected by stim. properties in
the stimulus-representation (area 1)
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Gap in the field: Naturalistic stimuli make it difficult to infer what
stimulus properties affect each brain zone because the stimuli are

. _ _ _ encoding model
multivariate and often high-dimensional.
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Main contribution: Enable researchers to infer if a stimulus
affects two brain zones in the same way by proposing an inference
framework that includes two new metrics.
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Encoding model performance significant in 34 language regions

Validation:
Simulations show that the proposed metrics provide new
insights beyond current brain mapping techniques.
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Each of the proposed metrics reveals distinct zone clusters, that
are consistent across datasets
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& & & & Examples of the 4 types of inferences
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variance in
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construct stimulus-representation
via neural network (i.e., ELMo)

Metrics Implementation & Validation

Encoding model: Causal interpretation:

Y = g;(X) + ¢

Y, eR
X € RY stimulus-representation
9i(X) = (X, ;)

reveals which brain zones affected

by stimulus properties captured by : N S o
stimulus-representation [1] encoding model performance (zone;) = corr(Y;, Y;)

commonly used, e.qg. [2-3]

observation in zone ;

Stimulus properties affect brain zones:
= mostly differently (Inference A)

— similarly & differently
ELMo is missing properties that affect zones similarly (Inference B)

== mostly similarly (Inference C)

== similarly & differently
ELMo is missing properties that affect zones differently (Inference D)

stimulus effect zone generalization (zone;, zonej) = corr()?z-, Y}) inspired by [4-5]
Artifact |

N zone residuals (zone;, zone;) = M2 — M
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Assumptions:
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> corr(Ri_js, Rij),
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" Rip=Yip—YpBf

Claim: encoding model inspired by [6]

cannot infer if stim.
properties affect 2 brain
zones in the same way
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Code: github.com/brainML/stim-effect
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