Jennifer Williams

🖂 jlw1@alumni.cmu.edu

O http://github.com/jennwilliams

jennwilliams.github.io

Highlights

- Deep expertise in building Machine Learning (ML) solutions specializing in Natural Language Processing (NLP), encompassing Large Language Models (LLMs), unsupervised, supervised, and deep learning
- Collaborated with cross-functional teams to develop ML models, showcasing versatility in crafting solutions for various data types including text, speech, images, videos, biosignals, and tabular
- Proposed, implemented, and validated novel ML frameworks to analyze imaging timeseries data
- Conceptualized and developed causal inference tools (i.e., Bayesian networks) fostering scientific discovery in complex datasets

EducationPhD in Computational Biology, School of Computer Science, Carnegie Mellon University, 2016 - 2022Advisor: Dr. Leila Wehbe (Machine Learning Department)Thesis: Modeling individual differences in language processing in the presence and absence of disease

Thesis: Modeling individual differences in language processing in the presence and absence of disease Thesis Committee: Tom Mitchell, Timothy Verstynen, Ashok Panigrahy

Cancer and Systems Biology EU-USA Atlantis Dual Degree Program, 2013 - 2016 MS in Natural Science, *Roswell Park, University at Buffalo* MSc in Integrated Systems Biology, *University of Luxembourg*

BS in Biology, Canisius University, Magna Cum Laude, 2009 - 2013

Publications • Same cause; different effects in the brain.

M. Toneva*, J. Williams* (co-first), A. Bollu, C. Dann, L. Wehbe. Causal Learning and Reasoning (CLeaR) 2022

- Behavior measures are predicted by how information is encoded in an individual's brain. J. Williams, L. Wehbe. *arXiv 2021* (in submission)
- Discriminative subtyping of lung cancers from histopathology images via contextual deep learning. B.J. Lengerich, M. Al-Shedivat, A. Alavi, <u>J. Williams</u>, S. Labbaki, E.P. Xing. *medRxiv 2020*
- LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer.
 S. Battaglia, E. Karasik, B. Gillard, <u>J. Williams</u>, T. Winchester, M.T. Moser, D.J. Smiraglia, B.A. Foster. *Clinical Epigenetics 2017*

Experience Senior Machine Learning Scientist, CVS Health, since April 2023

- Orchestrated and led a self-organizing Agile team to develop a tool for deploying ranking models on Google Cloud Platform (GCP), achieving a remarkable reduction in time-to-deployment to 20 minutes
- Presented technical demonstrations for co-developed products to diverse audiences, ranging from small groups to gatherings of up to 1,600 colleagues, including Senior VPs
- Designed and developed a scalable TensorFlow personalization model framework, enhancing ML solution efficiency

Computing Skills

• Python (Scikit-learn, Pandas, NumPy, SciPy, Matplotlib), Java, R, MATLAB, Bash, Cloud Platforms, Git, Container Platforms, Database Systems (SQL)

Relevant Courses

- Machine Learning
- ABCDE of Statistical Methods in Machine Learning
- Intermediate Statistics
- Probabilistic Graphical Models
- Cognitive Neuroscience

Leadership and Service

- Co-founder CVS ML Lunch and Learn Series
- Reviewer for IJCAI, Nature Scientific Reports, WiML and Learning from Time Series for Health NeurIPS Workshops, New in ML NeurIPS and ICML Workshops, ML4H Conference, ECCB
- Mentored Undergraduate Computer Science student (currently PhD student at Princeton)

Awards

- International Conference on Machine Learning (ICML) Travel Award
- Top 10 Reviewer Machine Learning for Health (ML4H)
- Invited to attend Machine Learning Summer School (MLSS)
- CMU Provost Conference Award

Selected Research Projects

Disambiguating language processing with causality	 Question: Why do neural network derived features of language predict large parts of the brain well? Do these brain zones process the features similarly or differently? Method Innovation: Developed a causal inference framework, that includes two new metrics, to provide insights beyond current brain mapping techniques. Specifically, the framework enables researchers to infer if a complex (multivariate and high dimensional) stimulus, such as language, affects two brain zones similarly. Scientific Discovery: Real-world language stimuli (i.e., videos) do not affect all parts of the brain's language network similarly. Paper: CLeaR 2022 (arXiv 2202.10376) Code: github.com/brainML/stim-effect
Deep learning to integrate multi- modal data	 Question: Can sample-specific models, similarly to subject matter experts, effectively integrate multi-modal data for accurate classification? Method Innovation: Inspired by contextual deep learning, created sample-specific multimodal models for lung cancer classification, by adapting Contextual Explanation Networks (CENs) (Al-Shedivat et al., JMLR 2020). Integrated both imaging and transcriptomic data into the classification models. Scientific Discovery: Sample-specific multimodal models increase classification accuracy and capture the heterogeneity of biological processes underlying lung cancer. Paper: medRxiv (DOI: 10.1101/2020.06.25.20140053)
Modeling individual differences for personalized insights	 Question: Can individual differences in how information is encoded in the brain predict behavior? Method Innovation: Built on insights from two sub-fields of neuroscience (brain mapping and behavioral neuroscience), to create the first machine learning framework to identify individual differences in brain encoding and test if these differences predict behavior. Scientific Discoveries: Individual differences in brain encoding can predict behavioral variability. Advised researchers to optimize their choice of neuroimaging task and feature-space for their behavior of interest. Paper: arXiv 2112.06048 Code: github.com/brainML/great-apes

Fellowships

- **Digital Health Fellowship** Center for Machine Learning and Health (2020 2021) Full tuition and stipend for 12 months and \$3,000 for research-related expenses
- NIH T32 Training Grant National Institute of Biomedical Imaging and Bioengineering (2017 2019) Full tuition and stipend for 2 years and \$6,000 for research-related expenses
- **CanSys MS Scholarship** Atlantis EU-USA Training Program (2013 2015) Stipend for 12 months